Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Written for linux by Johan Myreen as a translation from
4 : * the assembly version by Linus (with diacriticals added)
5 : *
6 : * Some additional features added by Christoph Niemann (ChN), March 1993
7 : *
8 : * Loadable keymaps by Risto Kankkunen, May 1993
9 : *
10 : * Diacriticals redone & other small changes, [email protected], June 1993
11 : * Added decr/incr_console, dynamic keymaps, Unicode support,
12 : * dynamic function/string keys, led setting, Sept 1994
13 : * `Sticky' modifier keys, 951006.
14 : *
15 : * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 : *
17 : * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 : * Merge with the m68k keyboard driver and split-off of the PC low-level
19 : * parts by Geert Uytterhoeven, May 1997
20 : *
21 : * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 : * 30-07-98: Dead keys redone, [email protected].
23 : * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 : */
25 :
26 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 :
28 : #include <linux/consolemap.h>
29 : #include <linux/init.h>
30 : #include <linux/input.h>
31 : #include <linux/jiffies.h>
32 : #include <linux/kbd_diacr.h>
33 : #include <linux/kbd_kern.h>
34 : #include <linux/leds.h>
35 : #include <linux/mm.h>
36 : #include <linux/module.h>
37 : #include <linux/nospec.h>
38 : #include <linux/notifier.h>
39 : #include <linux/reboot.h>
40 : #include <linux/sched/debug.h>
41 : #include <linux/sched/signal.h>
42 : #include <linux/slab.h>
43 : #include <linux/spinlock.h>
44 : #include <linux/string.h>
45 : #include <linux/tty_flip.h>
46 : #include <linux/tty.h>
47 : #include <linux/uaccess.h>
48 : #include <linux/vt_kern.h>
49 :
50 : #include <asm/irq_regs.h>
51 :
52 : /*
53 : * Exported functions/variables
54 : */
55 :
56 : #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57 :
58 : #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 : #include <asm/kbdleds.h>
60 : #else
61 : static inline int kbd_defleds(void)
62 : {
63 : return 0;
64 : }
65 : #endif
66 :
67 : #define KBD_DEFLOCK 0
68 :
69 : /*
70 : * Handler Tables.
71 : */
72 :
73 : #define K_HANDLERS\
74 : k_self, k_fn, k_spec, k_pad,\
75 : k_dead, k_cons, k_cur, k_shift,\
76 : k_meta, k_ascii, k_lock, k_lowercase,\
77 : k_slock, k_dead2, k_brl, k_ignore
78 :
79 : typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 : char up_flag);
81 : static k_handler_fn K_HANDLERS;
82 : static k_handler_fn *k_handler[16] = { K_HANDLERS };
83 :
84 : #define FN_HANDLERS\
85 : fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 : fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 : fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 : fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 : fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90 :
91 : typedef void (fn_handler_fn)(struct vc_data *vc);
92 : static fn_handler_fn FN_HANDLERS;
93 : static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94 :
95 : /*
96 : * Variables exported for vt_ioctl.c
97 : */
98 :
99 : struct vt_spawn_console vt_spawn_con = {
100 : .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 : .pid = NULL,
102 : .sig = 0,
103 : };
104 :
105 :
106 : /*
107 : * Internal Data.
108 : */
109 :
110 : static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 : static struct kbd_struct *kbd = kbd_table;
112 :
113 : /* maximum values each key_handler can handle */
114 : static const unsigned char max_vals[] = {
115 : [ KT_LATIN ] = 255,
116 : [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 : [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 : [ KT_PAD ] = NR_PAD - 1,
119 : [ KT_DEAD ] = NR_DEAD - 1,
120 : [ KT_CONS ] = 255,
121 : [ KT_CUR ] = 3,
122 : [ KT_SHIFT ] = NR_SHIFT - 1,
123 : [ KT_META ] = 255,
124 : [ KT_ASCII ] = NR_ASCII - 1,
125 : [ KT_LOCK ] = NR_LOCK - 1,
126 : [ KT_LETTER ] = 255,
127 : [ KT_SLOCK ] = NR_LOCK - 1,
128 : [ KT_DEAD2 ] = 255,
129 : [ KT_BRL ] = NR_BRL - 1,
130 : };
131 :
132 : static const int NR_TYPES = ARRAY_SIZE(max_vals);
133 :
134 : static void kbd_bh(struct tasklet_struct *unused);
135 : static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136 :
137 : static struct input_handler kbd_handler;
138 : static DEFINE_SPINLOCK(kbd_event_lock);
139 : static DEFINE_SPINLOCK(led_lock);
140 : static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141 : static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142 : static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143 : static bool dead_key_next;
144 :
145 : /* Handles a number being assembled on the number pad */
146 : static bool npadch_active;
147 : static unsigned int npadch_value;
148 :
149 : static unsigned int diacr;
150 : static bool rep; /* flag telling character repeat */
151 :
152 : static int shift_state = 0;
153 :
154 : static unsigned int ledstate = -1U; /* undefined */
155 : static unsigned char ledioctl;
156 : static bool vt_switch;
157 :
158 : /*
159 : * Notifier list for console keyboard events
160 : */
161 : static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162 :
163 0 : int register_keyboard_notifier(struct notifier_block *nb)
164 : {
165 0 : return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166 : }
167 : EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168 :
169 0 : int unregister_keyboard_notifier(struct notifier_block *nb)
170 : {
171 0 : return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172 : }
173 : EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174 :
175 : /*
176 : * Translation of scancodes to keycodes. We set them on only the first
177 : * keyboard in the list that accepts the scancode and keycode.
178 : * Explanation for not choosing the first attached keyboard anymore:
179 : * USB keyboards for example have two event devices: one for all "normal"
180 : * keys and one for extra function keys (like "volume up", "make coffee",
181 : * etc.). So this means that scancodes for the extra function keys won't
182 : * be valid for the first event device, but will be for the second.
183 : */
184 :
185 : struct getset_keycode_data {
186 : struct input_keymap_entry ke;
187 : int error;
188 : };
189 :
190 0 : static int getkeycode_helper(struct input_handle *handle, void *data)
191 : {
192 0 : struct getset_keycode_data *d = data;
193 :
194 0 : d->error = input_get_keycode(handle->dev, &d->ke);
195 :
196 0 : return d->error == 0; /* stop as soon as we successfully get one */
197 0 : }
198 :
199 0 : static int getkeycode(unsigned int scancode)
200 : {
201 0 : struct getset_keycode_data d = {
202 : .ke = {
203 : .flags = 0,
204 : .len = sizeof(scancode),
205 : .keycode = 0,
206 : },
207 : .error = -ENODEV,
208 : };
209 :
210 0 : memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211 :
212 0 : input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213 :
214 0 : return d.error ?: d.ke.keycode;
215 0 : }
216 :
217 0 : static int setkeycode_helper(struct input_handle *handle, void *data)
218 : {
219 0 : struct getset_keycode_data *d = data;
220 :
221 0 : d->error = input_set_keycode(handle->dev, &d->ke);
222 :
223 0 : return d->error == 0; /* stop as soon as we successfully set one */
224 0 : }
225 :
226 0 : static int setkeycode(unsigned int scancode, unsigned int keycode)
227 : {
228 0 : struct getset_keycode_data d = {
229 0 : .ke = {
230 : .flags = 0,
231 : .len = sizeof(scancode),
232 0 : .keycode = keycode,
233 : },
234 : .error = -ENODEV,
235 : };
236 :
237 0 : memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238 :
239 0 : input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240 :
241 0 : return d.error;
242 0 : }
243 :
244 : /*
245 : * Making beeps and bells. Note that we prefer beeps to bells, but when
246 : * shutting the sound off we do both.
247 : */
248 :
249 0 : static int kd_sound_helper(struct input_handle *handle, void *data)
250 : {
251 0 : unsigned int *hz = data;
252 0 : struct input_dev *dev = handle->dev;
253 :
254 0 : if (test_bit(EV_SND, dev->evbit)) {
255 0 : if (test_bit(SND_TONE, dev->sndbit)) {
256 0 : input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 0 : if (*hz)
258 0 : return 0;
259 0 : }
260 0 : if (test_bit(SND_BELL, dev->sndbit))
261 0 : input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 0 : }
263 :
264 0 : return 0;
265 0 : }
266 :
267 0 : static void kd_nosound(struct timer_list *unused)
268 : {
269 : static unsigned int zero;
270 :
271 0 : input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272 0 : }
273 :
274 : static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275 :
276 0 : void kd_mksound(unsigned int hz, unsigned int ticks)
277 : {
278 0 : timer_delete_sync(&kd_mksound_timer);
279 :
280 0 : input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281 :
282 0 : if (hz && ticks)
283 0 : mod_timer(&kd_mksound_timer, jiffies + ticks);
284 0 : }
285 : EXPORT_SYMBOL(kd_mksound);
286 :
287 : /*
288 : * Setting the keyboard rate.
289 : */
290 :
291 0 : static int kbd_rate_helper(struct input_handle *handle, void *data)
292 : {
293 0 : struct input_dev *dev = handle->dev;
294 0 : struct kbd_repeat *rpt = data;
295 :
296 0 : if (test_bit(EV_REP, dev->evbit)) {
297 :
298 0 : if (rpt[0].delay > 0)
299 0 : input_inject_event(handle,
300 0 : EV_REP, REP_DELAY, rpt[0].delay);
301 0 : if (rpt[0].period > 0)
302 0 : input_inject_event(handle,
303 0 : EV_REP, REP_PERIOD, rpt[0].period);
304 :
305 0 : rpt[1].delay = dev->rep[REP_DELAY];
306 0 : rpt[1].period = dev->rep[REP_PERIOD];
307 0 : }
308 :
309 0 : return 0;
310 0 : }
311 :
312 0 : int kbd_rate(struct kbd_repeat *rpt)
313 : {
314 0 : struct kbd_repeat data[2] = { *rpt };
315 :
316 0 : input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 0 : *rpt = data[1]; /* Copy currently used settings */
318 :
319 0 : return 0;
320 0 : }
321 :
322 : /*
323 : * Helper Functions.
324 : */
325 0 : static void put_queue(struct vc_data *vc, int ch)
326 : {
327 0 : tty_insert_flip_char(&vc->port, ch, 0);
328 0 : tty_flip_buffer_push(&vc->port);
329 0 : }
330 :
331 0 : static void puts_queue(struct vc_data *vc, const char *cp)
332 : {
333 0 : tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 0 : tty_flip_buffer_push(&vc->port);
335 0 : }
336 :
337 0 : static void applkey(struct vc_data *vc, int key, char mode)
338 : {
339 : static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340 :
341 0 : buf[1] = (mode ? 'O' : '[');
342 0 : buf[2] = key;
343 0 : puts_queue(vc, buf);
344 0 : }
345 :
346 : /*
347 : * Many other routines do put_queue, but I think either
348 : * they produce ASCII, or they produce some user-assigned
349 : * string, and in both cases we might assume that it is
350 : * in utf-8 already.
351 : */
352 0 : static void to_utf8(struct vc_data *vc, uint c)
353 : {
354 0 : if (c < 0x80)
355 : /* 0******* */
356 0 : put_queue(vc, c);
357 0 : else if (c < 0x800) {
358 : /* 110***** 10****** */
359 0 : put_queue(vc, 0xc0 | (c >> 6));
360 0 : put_queue(vc, 0x80 | (c & 0x3f));
361 0 : } else if (c < 0x10000) {
362 0 : if (c >= 0xD800 && c < 0xE000)
363 0 : return;
364 0 : if (c == 0xFFFF)
365 0 : return;
366 : /* 1110**** 10****** 10****** */
367 0 : put_queue(vc, 0xe0 | (c >> 12));
368 0 : put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 0 : put_queue(vc, 0x80 | (c & 0x3f));
370 0 : } else if (c < 0x110000) {
371 : /* 11110*** 10****** 10****** 10****** */
372 0 : put_queue(vc, 0xf0 | (c >> 18));
373 0 : put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 0 : put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 0 : put_queue(vc, 0x80 | (c & 0x3f));
376 0 : }
377 0 : }
378 :
379 0 : static void put_queue_utf8(struct vc_data *vc, u32 value)
380 : {
381 0 : if (kbd->kbdmode == VC_UNICODE)
382 0 : to_utf8(vc, value);
383 : else {
384 0 : int c = conv_uni_to_8bit(value);
385 0 : if (c != -1)
386 0 : put_queue(vc, c);
387 0 : }
388 0 : }
389 :
390 : /* FIXME: review locking for vt.c callers */
391 0 : static void set_leds(void)
392 : {
393 0 : tasklet_schedule(&keyboard_tasklet);
394 0 : }
395 :
396 : /*
397 : * Called after returning from RAW mode or when changing consoles - recompute
398 : * shift_down[] and shift_state from key_down[] maybe called when keymap is
399 : * undefined, so that shiftkey release is seen. The caller must hold the
400 : * kbd_event_lock.
401 : */
402 :
403 0 : static void do_compute_shiftstate(void)
404 : {
405 0 : unsigned int k, sym, val;
406 :
407 0 : shift_state = 0;
408 0 : memset(shift_down, 0, sizeof(shift_down));
409 :
410 0 : for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
411 0 : sym = U(key_maps[0][k]);
412 0 : if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
413 0 : continue;
414 :
415 0 : val = KVAL(sym);
416 0 : if (val == KVAL(K_CAPSSHIFT))
417 0 : val = KVAL(K_SHIFT);
418 :
419 0 : shift_down[val]++;
420 0 : shift_state |= BIT(val);
421 0 : }
422 0 : }
423 :
424 : /* We still have to export this method to vt.c */
425 0 : void vt_set_leds_compute_shiftstate(void)
426 : {
427 0 : unsigned long flags;
428 :
429 : /*
430 : * When VT is switched, the keyboard led needs to be set once.
431 : * Ensure that after the switch is completed, the state of the
432 : * keyboard LED is consistent with the state of the keyboard lock.
433 : */
434 0 : vt_switch = true;
435 0 : set_leds();
436 :
437 0 : spin_lock_irqsave(&kbd_event_lock, flags);
438 0 : do_compute_shiftstate();
439 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
440 0 : }
441 :
442 : /*
443 : * We have a combining character DIACR here, followed by the character CH.
444 : * If the combination occurs in the table, return the corresponding value.
445 : * Otherwise, if CH is a space or equals DIACR, return DIACR.
446 : * Otherwise, conclude that DIACR was not combining after all,
447 : * queue it and return CH.
448 : */
449 0 : static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
450 : {
451 0 : unsigned int d = diacr;
452 0 : unsigned int i;
453 :
454 0 : diacr = 0;
455 :
456 0 : if ((d & ~0xff) == BRL_UC_ROW) {
457 0 : if ((ch & ~0xff) == BRL_UC_ROW)
458 0 : return d | ch;
459 0 : } else {
460 0 : for (i = 0; i < accent_table_size; i++)
461 0 : if (accent_table[i].diacr == d && accent_table[i].base == ch)
462 0 : return accent_table[i].result;
463 : }
464 :
465 0 : if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
466 0 : return d;
467 :
468 0 : put_queue_utf8(vc, d);
469 :
470 0 : return ch;
471 0 : }
472 :
473 : /*
474 : * Special function handlers
475 : */
476 0 : static void fn_enter(struct vc_data *vc)
477 : {
478 0 : if (diacr) {
479 0 : put_queue_utf8(vc, diacr);
480 0 : diacr = 0;
481 0 : }
482 :
483 0 : put_queue(vc, '\r');
484 0 : if (vc_kbd_mode(kbd, VC_CRLF))
485 0 : put_queue(vc, '\n');
486 0 : }
487 :
488 0 : static void fn_caps_toggle(struct vc_data *vc)
489 : {
490 0 : if (rep)
491 0 : return;
492 :
493 0 : chg_vc_kbd_led(kbd, VC_CAPSLOCK);
494 0 : }
495 :
496 0 : static void fn_caps_on(struct vc_data *vc)
497 : {
498 0 : if (rep)
499 0 : return;
500 :
501 0 : set_vc_kbd_led(kbd, VC_CAPSLOCK);
502 0 : }
503 :
504 0 : static void fn_show_ptregs(struct vc_data *vc)
505 : {
506 0 : struct pt_regs *regs = get_irq_regs();
507 :
508 0 : if (regs)
509 0 : show_regs(regs);
510 0 : }
511 :
512 0 : static void fn_hold(struct vc_data *vc)
513 : {
514 0 : struct tty_struct *tty = vc->port.tty;
515 :
516 0 : if (rep || !tty)
517 0 : return;
518 :
519 : /*
520 : * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
521 : * these routines are also activated by ^S/^Q.
522 : * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
523 : */
524 0 : if (tty->flow.stopped)
525 0 : start_tty(tty);
526 : else
527 0 : stop_tty(tty);
528 0 : }
529 :
530 0 : static void fn_num(struct vc_data *vc)
531 : {
532 0 : if (vc_kbd_mode(kbd, VC_APPLIC))
533 0 : applkey(vc, 'P', 1);
534 : else
535 0 : fn_bare_num(vc);
536 0 : }
537 :
538 : /*
539 : * Bind this to Shift-NumLock if you work in application keypad mode
540 : * but want to be able to change the NumLock flag.
541 : * Bind this to NumLock if you prefer that the NumLock key always
542 : * changes the NumLock flag.
543 : */
544 0 : static void fn_bare_num(struct vc_data *vc)
545 : {
546 0 : if (!rep)
547 0 : chg_vc_kbd_led(kbd, VC_NUMLOCK);
548 0 : }
549 :
550 0 : static void fn_lastcons(struct vc_data *vc)
551 : {
552 : /* switch to the last used console, ChN */
553 0 : set_console(last_console);
554 0 : }
555 :
556 0 : static void fn_dec_console(struct vc_data *vc)
557 : {
558 0 : int i, cur = fg_console;
559 :
560 : /* Currently switching? Queue this next switch relative to that. */
561 0 : if (want_console != -1)
562 0 : cur = want_console;
563 :
564 0 : for (i = cur - 1; i != cur; i--) {
565 0 : if (i == -1)
566 0 : i = MAX_NR_CONSOLES - 1;
567 0 : if (vc_cons_allocated(i))
568 0 : break;
569 0 : }
570 0 : set_console(i);
571 0 : }
572 :
573 0 : static void fn_inc_console(struct vc_data *vc)
574 : {
575 0 : int i, cur = fg_console;
576 :
577 : /* Currently switching? Queue this next switch relative to that. */
578 0 : if (want_console != -1)
579 0 : cur = want_console;
580 :
581 0 : for (i = cur+1; i != cur; i++) {
582 0 : if (i == MAX_NR_CONSOLES)
583 0 : i = 0;
584 0 : if (vc_cons_allocated(i))
585 0 : break;
586 0 : }
587 0 : set_console(i);
588 0 : }
589 :
590 0 : static void fn_send_intr(struct vc_data *vc)
591 : {
592 0 : tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
593 0 : tty_flip_buffer_push(&vc->port);
594 0 : }
595 :
596 0 : static void fn_scroll_forw(struct vc_data *vc)
597 : {
598 0 : scrollfront(vc, 0);
599 0 : }
600 :
601 0 : static void fn_scroll_back(struct vc_data *vc)
602 : {
603 0 : scrollback(vc);
604 0 : }
605 :
606 0 : static void fn_show_mem(struct vc_data *vc)
607 : {
608 0 : show_mem();
609 0 : }
610 :
611 0 : static void fn_show_state(struct vc_data *vc)
612 : {
613 0 : show_state();
614 0 : }
615 :
616 0 : static void fn_boot_it(struct vc_data *vc)
617 : {
618 0 : ctrl_alt_del();
619 0 : }
620 :
621 0 : static void fn_compose(struct vc_data *vc)
622 : {
623 0 : dead_key_next = true;
624 0 : }
625 :
626 0 : static void fn_spawn_con(struct vc_data *vc)
627 : {
628 0 : spin_lock(&vt_spawn_con.lock);
629 0 : if (vt_spawn_con.pid)
630 0 : if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
631 0 : put_pid(vt_spawn_con.pid);
632 0 : vt_spawn_con.pid = NULL;
633 0 : }
634 0 : spin_unlock(&vt_spawn_con.lock);
635 0 : }
636 :
637 0 : static void fn_SAK(struct vc_data *vc)
638 : {
639 0 : struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
640 0 : schedule_work(SAK_work);
641 0 : }
642 :
643 0 : static void fn_null(struct vc_data *vc)
644 : {
645 0 : do_compute_shiftstate();
646 0 : }
647 :
648 : /*
649 : * Special key handlers
650 : */
651 0 : static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
652 : {
653 0 : }
654 :
655 0 : static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
656 : {
657 0 : if (up_flag)
658 0 : return;
659 0 : if (value >= ARRAY_SIZE(fn_handler))
660 0 : return;
661 0 : if ((kbd->kbdmode == VC_RAW ||
662 0 : kbd->kbdmode == VC_MEDIUMRAW ||
663 0 : kbd->kbdmode == VC_OFF) &&
664 0 : value != KVAL(K_SAK))
665 0 : return; /* SAK is allowed even in raw mode */
666 0 : fn_handler[value](vc);
667 0 : }
668 :
669 0 : static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
670 : {
671 0 : pr_err("k_lowercase was called - impossible\n");
672 0 : }
673 :
674 0 : static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
675 : {
676 0 : if (up_flag)
677 0 : return; /* no action, if this is a key release */
678 :
679 0 : if (diacr)
680 0 : value = handle_diacr(vc, value);
681 :
682 0 : if (dead_key_next) {
683 0 : dead_key_next = false;
684 0 : diacr = value;
685 0 : return;
686 : }
687 0 : put_queue_utf8(vc, value);
688 0 : }
689 :
690 : /*
691 : * Handle dead key. Note that we now may have several
692 : * dead keys modifying the same character. Very useful
693 : * for Vietnamese.
694 : */
695 0 : static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
696 : {
697 0 : if (up_flag)
698 0 : return;
699 :
700 0 : diacr = (diacr ? handle_diacr(vc, value) : value);
701 0 : }
702 :
703 0 : static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
704 : {
705 0 : k_unicode(vc, conv_8bit_to_uni(value), up_flag);
706 0 : }
707 :
708 0 : static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
709 : {
710 0 : k_deadunicode(vc, value, up_flag);
711 0 : }
712 :
713 : /*
714 : * Obsolete - for backwards compatibility only
715 : */
716 0 : static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
717 : {
718 : static const unsigned char ret_diacr[NR_DEAD] = {
719 : '`', /* dead_grave */
720 : '\'', /* dead_acute */
721 : '^', /* dead_circumflex */
722 : '~', /* dead_tilda */
723 : '"', /* dead_diaeresis */
724 : ',', /* dead_cedilla */
725 : '_', /* dead_macron */
726 : 'U', /* dead_breve */
727 : '.', /* dead_abovedot */
728 : '*', /* dead_abovering */
729 : '=', /* dead_doubleacute */
730 : 'c', /* dead_caron */
731 : 'k', /* dead_ogonek */
732 : 'i', /* dead_iota */
733 : '#', /* dead_voiced_sound */
734 : 'o', /* dead_semivoiced_sound */
735 : '!', /* dead_belowdot */
736 : '?', /* dead_hook */
737 : '+', /* dead_horn */
738 : '-', /* dead_stroke */
739 : ')', /* dead_abovecomma */
740 : '(', /* dead_abovereversedcomma */
741 : ':', /* dead_doublegrave */
742 : 'n', /* dead_invertedbreve */
743 : ';', /* dead_belowcomma */
744 : '$', /* dead_currency */
745 : '@', /* dead_greek */
746 : };
747 :
748 0 : k_deadunicode(vc, ret_diacr[value], up_flag);
749 0 : }
750 :
751 0 : static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
752 : {
753 0 : if (up_flag)
754 0 : return;
755 :
756 0 : set_console(value);
757 0 : }
758 :
759 0 : static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
760 : {
761 0 : if (up_flag)
762 0 : return;
763 :
764 0 : if ((unsigned)value < ARRAY_SIZE(func_table)) {
765 0 : unsigned long flags;
766 :
767 0 : spin_lock_irqsave(&func_buf_lock, flags);
768 0 : if (func_table[value])
769 0 : puts_queue(vc, func_table[value]);
770 0 : spin_unlock_irqrestore(&func_buf_lock, flags);
771 :
772 0 : } else
773 0 : pr_err("k_fn called with value=%d\n", value);
774 0 : }
775 :
776 0 : static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
777 : {
778 : static const char cur_chars[] = "BDCA";
779 :
780 0 : if (up_flag)
781 0 : return;
782 :
783 0 : applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
784 0 : }
785 :
786 0 : static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
787 : {
788 : static const char pad_chars[] = "0123456789+-*/\015,.?()#";
789 : static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
790 :
791 0 : if (up_flag)
792 0 : return; /* no action, if this is a key release */
793 :
794 : /* kludge... shift forces cursor/number keys */
795 0 : if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
796 0 : applkey(vc, app_map[value], 1);
797 0 : return;
798 : }
799 :
800 0 : if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
801 :
802 0 : switch (value) {
803 : case KVAL(K_PCOMMA):
804 : case KVAL(K_PDOT):
805 0 : k_fn(vc, KVAL(K_REMOVE), 0);
806 0 : return;
807 : case KVAL(K_P0):
808 0 : k_fn(vc, KVAL(K_INSERT), 0);
809 0 : return;
810 : case KVAL(K_P1):
811 0 : k_fn(vc, KVAL(K_SELECT), 0);
812 0 : return;
813 : case KVAL(K_P2):
814 0 : k_cur(vc, KVAL(K_DOWN), 0);
815 0 : return;
816 : case KVAL(K_P3):
817 0 : k_fn(vc, KVAL(K_PGDN), 0);
818 0 : return;
819 : case KVAL(K_P4):
820 0 : k_cur(vc, KVAL(K_LEFT), 0);
821 0 : return;
822 : case KVAL(K_P6):
823 0 : k_cur(vc, KVAL(K_RIGHT), 0);
824 0 : return;
825 : case KVAL(K_P7):
826 0 : k_fn(vc, KVAL(K_FIND), 0);
827 0 : return;
828 : case KVAL(K_P8):
829 0 : k_cur(vc, KVAL(K_UP), 0);
830 0 : return;
831 : case KVAL(K_P9):
832 0 : k_fn(vc, KVAL(K_PGUP), 0);
833 0 : return;
834 : case KVAL(K_P5):
835 0 : applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
836 0 : return;
837 : }
838 0 : }
839 :
840 0 : put_queue(vc, pad_chars[value]);
841 0 : if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
842 0 : put_queue(vc, '\n');
843 0 : }
844 :
845 0 : static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
846 : {
847 0 : int old_state = shift_state;
848 :
849 0 : if (rep)
850 0 : return;
851 : /*
852 : * Mimic typewriter:
853 : * a CapsShift key acts like Shift but undoes CapsLock
854 : */
855 0 : if (value == KVAL(K_CAPSSHIFT)) {
856 0 : value = KVAL(K_SHIFT);
857 0 : if (!up_flag)
858 0 : clr_vc_kbd_led(kbd, VC_CAPSLOCK);
859 0 : }
860 :
861 0 : if (up_flag) {
862 : /*
863 : * handle the case that two shift or control
864 : * keys are depressed simultaneously
865 : */
866 0 : if (shift_down[value])
867 0 : shift_down[value]--;
868 0 : } else
869 0 : shift_down[value]++;
870 :
871 0 : if (shift_down[value])
872 0 : shift_state |= BIT(value);
873 : else
874 0 : shift_state &= ~BIT(value);
875 :
876 : /* kludge */
877 0 : if (up_flag && shift_state != old_state && npadch_active) {
878 0 : if (kbd->kbdmode == VC_UNICODE)
879 0 : to_utf8(vc, npadch_value);
880 : else
881 0 : put_queue(vc, npadch_value & 0xff);
882 0 : npadch_active = false;
883 0 : }
884 0 : }
885 :
886 0 : static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
887 : {
888 0 : if (up_flag)
889 0 : return;
890 :
891 0 : if (vc_kbd_mode(kbd, VC_META)) {
892 0 : put_queue(vc, '\033');
893 0 : put_queue(vc, value);
894 0 : } else
895 0 : put_queue(vc, value | BIT(7));
896 0 : }
897 :
898 0 : static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
899 : {
900 0 : unsigned int base;
901 :
902 0 : if (up_flag)
903 0 : return;
904 :
905 0 : if (value < 10) {
906 : /* decimal input of code, while Alt depressed */
907 0 : base = 10;
908 0 : } else {
909 : /* hexadecimal input of code, while AltGr depressed */
910 0 : value -= 10;
911 0 : base = 16;
912 : }
913 :
914 0 : if (!npadch_active) {
915 0 : npadch_value = 0;
916 0 : npadch_active = true;
917 0 : }
918 :
919 0 : npadch_value = npadch_value * base + value;
920 0 : }
921 :
922 0 : static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
923 : {
924 0 : if (up_flag || rep)
925 0 : return;
926 :
927 0 : chg_vc_kbd_lock(kbd, value);
928 0 : }
929 :
930 0 : static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
931 : {
932 0 : k_shift(vc, value, up_flag);
933 0 : if (up_flag || rep)
934 0 : return;
935 :
936 0 : chg_vc_kbd_slock(kbd, value);
937 : /* try to make Alt, oops, AltGr and such work */
938 0 : if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
939 0 : kbd->slockstate = 0;
940 0 : chg_vc_kbd_slock(kbd, value);
941 0 : }
942 0 : }
943 :
944 : /* by default, 300ms interval for combination release */
945 : static unsigned brl_timeout = 300;
946 : MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
947 : module_param(brl_timeout, uint, 0644);
948 :
949 : static unsigned brl_nbchords = 1;
950 : MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
951 : module_param(brl_nbchords, uint, 0644);
952 :
953 0 : static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
954 : {
955 : static unsigned long chords;
956 : static unsigned committed;
957 :
958 0 : if (!brl_nbchords)
959 0 : k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
960 : else {
961 0 : committed |= pattern;
962 0 : chords++;
963 0 : if (chords == brl_nbchords) {
964 0 : k_unicode(vc, BRL_UC_ROW | committed, up_flag);
965 0 : chords = 0;
966 0 : committed = 0;
967 0 : }
968 : }
969 0 : }
970 :
971 0 : static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
972 : {
973 : static unsigned pressed, committing;
974 : static unsigned long releasestart;
975 :
976 0 : if (kbd->kbdmode != VC_UNICODE) {
977 0 : if (!up_flag)
978 0 : pr_warn("keyboard mode must be unicode for braille patterns\n");
979 0 : return;
980 : }
981 :
982 0 : if (!value) {
983 0 : k_unicode(vc, BRL_UC_ROW, up_flag);
984 0 : return;
985 : }
986 :
987 0 : if (value > 8)
988 0 : return;
989 :
990 0 : if (!up_flag) {
991 0 : pressed |= BIT(value - 1);
992 0 : if (!brl_timeout)
993 0 : committing = pressed;
994 0 : } else if (brl_timeout) {
995 0 : if (!committing ||
996 0 : time_after(jiffies,
997 : releasestart + msecs_to_jiffies(brl_timeout))) {
998 0 : committing = pressed;
999 0 : releasestart = jiffies;
1000 0 : }
1001 0 : pressed &= ~BIT(value - 1);
1002 0 : if (!pressed && committing) {
1003 0 : k_brlcommit(vc, committing, 0);
1004 0 : committing = 0;
1005 0 : }
1006 0 : } else {
1007 0 : if (committing) {
1008 0 : k_brlcommit(vc, committing, 0);
1009 0 : committing = 0;
1010 0 : }
1011 0 : pressed &= ~BIT(value - 1);
1012 : }
1013 0 : }
1014 :
1015 : #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016 :
1017 : struct kbd_led_trigger {
1018 : struct led_trigger trigger;
1019 : unsigned int mask;
1020 : };
1021 :
1022 0 : static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023 : {
1024 0 : struct kbd_led_trigger *trigger =
1025 0 : container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026 :
1027 0 : tasklet_disable(&keyboard_tasklet);
1028 0 : if (ledstate != -1U)
1029 0 : led_set_brightness(cdev, ledstate & trigger->mask ? LED_FULL : LED_OFF);
1030 0 : tasklet_enable(&keyboard_tasklet);
1031 :
1032 0 : return 0;
1033 0 : }
1034 :
1035 : #define KBD_LED_TRIGGER(_led_bit, _name) { \
1036 : .trigger = { \
1037 : .name = _name, \
1038 : .activate = kbd_led_trigger_activate, \
1039 : }, \
1040 : .mask = BIT(_led_bit), \
1041 : }
1042 :
1043 : #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1044 : KBD_LED_TRIGGER((_led_bit) + 8, _name)
1045 :
1046 : static struct kbd_led_trigger kbd_led_triggers[] = {
1047 : KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1048 : KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1049 : KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1050 : KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1051 :
1052 : KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1053 : KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1054 : KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1055 : KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1056 : KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1057 : KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1058 : KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1059 : KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1060 : };
1061 :
1062 0 : static void kbd_propagate_led_state(unsigned int old_state,
1063 : unsigned int new_state)
1064 : {
1065 0 : struct kbd_led_trigger *trigger;
1066 0 : unsigned int changed = old_state ^ new_state;
1067 0 : int i;
1068 :
1069 0 : for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1070 0 : trigger = &kbd_led_triggers[i];
1071 :
1072 0 : if (changed & trigger->mask)
1073 0 : led_trigger_event(&trigger->trigger,
1074 0 : new_state & trigger->mask ?
1075 : LED_FULL : LED_OFF);
1076 0 : }
1077 0 : }
1078 :
1079 0 : static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1080 : {
1081 0 : unsigned int led_state = *(unsigned int *)data;
1082 :
1083 0 : if (test_bit(EV_LED, handle->dev->evbit))
1084 0 : kbd_propagate_led_state(~led_state, led_state);
1085 :
1086 0 : return 0;
1087 0 : }
1088 :
1089 0 : static void kbd_init_leds(void)
1090 : {
1091 0 : int error;
1092 0 : int i;
1093 :
1094 0 : for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1095 0 : error = led_trigger_register(&kbd_led_triggers[i].trigger);
1096 0 : if (error)
1097 0 : pr_err("error %d while registering trigger %s\n",
1098 : error, kbd_led_triggers[i].trigger.name);
1099 0 : }
1100 0 : }
1101 :
1102 : #else
1103 :
1104 : static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1105 : {
1106 : unsigned int leds = *(unsigned int *)data;
1107 :
1108 : if (test_bit(EV_LED, handle->dev->evbit)) {
1109 : input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1110 : input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1111 : input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1112 : input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1113 : }
1114 :
1115 : return 0;
1116 : }
1117 :
1118 : static void kbd_propagate_led_state(unsigned int old_state,
1119 : unsigned int new_state)
1120 : {
1121 : input_handler_for_each_handle(&kbd_handler, &new_state,
1122 : kbd_update_leds_helper);
1123 : }
1124 :
1125 : static void kbd_init_leds(void)
1126 : {
1127 : }
1128 :
1129 : #endif
1130 :
1131 : /*
1132 : * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1133 : * or (ii) whatever pattern of lights people want to show using KDSETLED,
1134 : * or (iii) specified bits of specified words in kernel memory.
1135 : */
1136 0 : static unsigned char getledstate(void)
1137 : {
1138 0 : return ledstate & 0xff;
1139 : }
1140 :
1141 0 : void setledstate(struct kbd_struct *kb, unsigned int led)
1142 : {
1143 0 : unsigned long flags;
1144 0 : spin_lock_irqsave(&led_lock, flags);
1145 0 : if (!(led & ~7)) {
1146 0 : ledioctl = led;
1147 0 : kb->ledmode = LED_SHOW_IOCTL;
1148 0 : } else
1149 0 : kb->ledmode = LED_SHOW_FLAGS;
1150 :
1151 0 : set_leds();
1152 0 : spin_unlock_irqrestore(&led_lock, flags);
1153 0 : }
1154 :
1155 0 : static inline unsigned char getleds(void)
1156 : {
1157 0 : struct kbd_struct *kb = kbd_table + fg_console;
1158 :
1159 0 : if (kb->ledmode == LED_SHOW_IOCTL)
1160 0 : return ledioctl;
1161 :
1162 0 : return kb->ledflagstate;
1163 0 : }
1164 :
1165 : /**
1166 : * vt_get_leds - helper for braille console
1167 : * @console: console to read
1168 : * @flag: flag we want to check
1169 : *
1170 : * Check the status of a keyboard led flag and report it back
1171 : */
1172 0 : int vt_get_leds(unsigned int console, int flag)
1173 : {
1174 0 : struct kbd_struct *kb = &kbd_table[console];
1175 0 : int ret;
1176 0 : unsigned long flags;
1177 :
1178 0 : spin_lock_irqsave(&led_lock, flags);
1179 0 : ret = vc_kbd_led(kb, flag);
1180 0 : spin_unlock_irqrestore(&led_lock, flags);
1181 :
1182 0 : return ret;
1183 0 : }
1184 : EXPORT_SYMBOL_GPL(vt_get_leds);
1185 :
1186 : /**
1187 : * vt_set_led_state - set LED state of a console
1188 : * @console: console to set
1189 : * @leds: LED bits
1190 : *
1191 : * Set the LEDs on a console. This is a wrapper for the VT layer
1192 : * so that we can keep kbd knowledge internal
1193 : */
1194 0 : void vt_set_led_state(unsigned int console, int leds)
1195 : {
1196 0 : struct kbd_struct *kb = &kbd_table[console];
1197 0 : setledstate(kb, leds);
1198 0 : }
1199 :
1200 : /**
1201 : * vt_kbd_con_start - Keyboard side of console start
1202 : * @console: console
1203 : *
1204 : * Handle console start. This is a wrapper for the VT layer
1205 : * so that we can keep kbd knowledge internal
1206 : *
1207 : * FIXME: We eventually need to hold the kbd lock here to protect
1208 : * the LED updating. We can't do it yet because fn_hold calls stop_tty
1209 : * and start_tty under the kbd_event_lock, while normal tty paths
1210 : * don't hold the lock. We probably need to split out an LED lock
1211 : * but not during an -rc release!
1212 : */
1213 0 : void vt_kbd_con_start(unsigned int console)
1214 : {
1215 0 : struct kbd_struct *kb = &kbd_table[console];
1216 0 : unsigned long flags;
1217 0 : spin_lock_irqsave(&led_lock, flags);
1218 0 : clr_vc_kbd_led(kb, VC_SCROLLOCK);
1219 0 : set_leds();
1220 0 : spin_unlock_irqrestore(&led_lock, flags);
1221 0 : }
1222 :
1223 : /**
1224 : * vt_kbd_con_stop - Keyboard side of console stop
1225 : * @console: console
1226 : *
1227 : * Handle console stop. This is a wrapper for the VT layer
1228 : * so that we can keep kbd knowledge internal
1229 : */
1230 0 : void vt_kbd_con_stop(unsigned int console)
1231 : {
1232 0 : struct kbd_struct *kb = &kbd_table[console];
1233 0 : unsigned long flags;
1234 0 : spin_lock_irqsave(&led_lock, flags);
1235 0 : set_vc_kbd_led(kb, VC_SCROLLOCK);
1236 0 : set_leds();
1237 0 : spin_unlock_irqrestore(&led_lock, flags);
1238 0 : }
1239 :
1240 : /*
1241 : * This is the tasklet that updates LED state of LEDs using standard
1242 : * keyboard triggers. The reason we use tasklet is that we need to
1243 : * handle the scenario when keyboard handler is not registered yet
1244 : * but we already getting updates from the VT to update led state.
1245 : */
1246 0 : static void kbd_bh(struct tasklet_struct *unused)
1247 : {
1248 0 : unsigned int leds;
1249 0 : unsigned long flags;
1250 :
1251 0 : spin_lock_irqsave(&led_lock, flags);
1252 0 : leds = getleds();
1253 0 : leds |= (unsigned int)kbd->lockstate << 8;
1254 0 : spin_unlock_irqrestore(&led_lock, flags);
1255 :
1256 0 : if (vt_switch) {
1257 0 : ledstate = ~leds;
1258 0 : vt_switch = false;
1259 0 : }
1260 :
1261 0 : if (leds != ledstate) {
1262 0 : kbd_propagate_led_state(ledstate, leds);
1263 0 : ledstate = leds;
1264 0 : }
1265 0 : }
1266 :
1267 : #if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1268 : defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1269 : defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1270 : (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1271 :
1272 0 : static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1273 : {
1274 0 : if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1275 0 : return false;
1276 :
1277 0 : return dev->id.bustype == BUS_I8042 &&
1278 0 : dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1279 0 : }
1280 :
1281 : static const unsigned short x86_keycodes[256] =
1282 : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1283 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1284 : 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1285 : 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1286 : 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1287 : 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1288 : 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1289 : 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1290 : 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1291 : 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1292 : 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1293 : 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1294 : 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1295 : 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1296 : 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1297 :
1298 : #ifdef CONFIG_SPARC
1299 : static int sparc_l1_a_state;
1300 : extern void sun_do_break(void);
1301 : #endif
1302 :
1303 0 : static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1304 : unsigned char up_flag)
1305 : {
1306 0 : int code;
1307 :
1308 0 : switch (keycode) {
1309 :
1310 : case KEY_PAUSE:
1311 0 : put_queue(vc, 0xe1);
1312 0 : put_queue(vc, 0x1d | up_flag);
1313 0 : put_queue(vc, 0x45 | up_flag);
1314 0 : break;
1315 :
1316 : case KEY_HANGEUL:
1317 0 : if (!up_flag)
1318 0 : put_queue(vc, 0xf2);
1319 0 : break;
1320 :
1321 : case KEY_HANJA:
1322 0 : if (!up_flag)
1323 0 : put_queue(vc, 0xf1);
1324 0 : break;
1325 :
1326 : case KEY_SYSRQ:
1327 : /*
1328 : * Real AT keyboards (that's what we're trying
1329 : * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1330 : * pressing PrtSc/SysRq alone, but simply 0x54
1331 : * when pressing Alt+PrtSc/SysRq.
1332 : */
1333 0 : if (test_bit(KEY_LEFTALT, key_down) ||
1334 0 : test_bit(KEY_RIGHTALT, key_down)) {
1335 0 : put_queue(vc, 0x54 | up_flag);
1336 0 : } else {
1337 0 : put_queue(vc, 0xe0);
1338 0 : put_queue(vc, 0x2a | up_flag);
1339 0 : put_queue(vc, 0xe0);
1340 0 : put_queue(vc, 0x37 | up_flag);
1341 : }
1342 0 : break;
1343 :
1344 : default:
1345 0 : if (keycode > 255)
1346 0 : return -1;
1347 :
1348 0 : code = x86_keycodes[keycode];
1349 0 : if (!code)
1350 0 : return -1;
1351 :
1352 0 : if (code & 0x100)
1353 0 : put_queue(vc, 0xe0);
1354 0 : put_queue(vc, (code & 0x7f) | up_flag);
1355 :
1356 0 : break;
1357 : }
1358 :
1359 0 : return 0;
1360 0 : }
1361 :
1362 : #else
1363 :
1364 : static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1365 : {
1366 : return false;
1367 : }
1368 :
1369 : static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1370 : {
1371 : if (keycode > 127)
1372 : return -1;
1373 :
1374 : put_queue(vc, keycode | up_flag);
1375 : return 0;
1376 : }
1377 : #endif
1378 :
1379 0 : static void kbd_rawcode(unsigned char data)
1380 : {
1381 0 : struct vc_data *vc = vc_cons[fg_console].d;
1382 :
1383 0 : kbd = &kbd_table[vc->vc_num];
1384 0 : if (kbd->kbdmode == VC_RAW)
1385 0 : put_queue(vc, data);
1386 0 : }
1387 :
1388 0 : static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1389 : {
1390 0 : struct vc_data *vc = vc_cons[fg_console].d;
1391 0 : unsigned short keysym, *key_map;
1392 0 : unsigned char type;
1393 0 : bool raw_mode;
1394 0 : struct tty_struct *tty;
1395 0 : int shift_final;
1396 0 : struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1397 0 : int rc;
1398 :
1399 0 : tty = vc->port.tty;
1400 :
1401 0 : if (tty && (!tty->driver_data)) {
1402 : /* No driver data? Strange. Okay we fix it then. */
1403 0 : tty->driver_data = vc;
1404 0 : }
1405 :
1406 0 : kbd = &kbd_table[vc->vc_num];
1407 :
1408 : #ifdef CONFIG_SPARC
1409 : if (keycode == KEY_STOP)
1410 : sparc_l1_a_state = down;
1411 : #endif
1412 :
1413 0 : rep = (down == 2);
1414 :
1415 0 : raw_mode = (kbd->kbdmode == VC_RAW);
1416 0 : if (raw_mode && !hw_raw)
1417 0 : if (emulate_raw(vc, keycode, !down << 7))
1418 0 : if (keycode < BTN_MISC && printk_ratelimit())
1419 0 : pr_warn("can't emulate rawmode for keycode %d\n",
1420 : keycode);
1421 :
1422 : #ifdef CONFIG_SPARC
1423 : if (keycode == KEY_A && sparc_l1_a_state) {
1424 : sparc_l1_a_state = false;
1425 : sun_do_break();
1426 : }
1427 : #endif
1428 :
1429 0 : if (kbd->kbdmode == VC_MEDIUMRAW) {
1430 : /*
1431 : * This is extended medium raw mode, with keys above 127
1432 : * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1433 : * the 'up' flag if needed. 0 is reserved, so this shouldn't
1434 : * interfere with anything else. The two bytes after 0 will
1435 : * always have the up flag set not to interfere with older
1436 : * applications. This allows for 16384 different keycodes,
1437 : * which should be enough.
1438 : */
1439 0 : if (keycode < 128) {
1440 0 : put_queue(vc, keycode | (!down << 7));
1441 0 : } else {
1442 0 : put_queue(vc, !down << 7);
1443 0 : put_queue(vc, (keycode >> 7) | BIT(7));
1444 0 : put_queue(vc, keycode | BIT(7));
1445 : }
1446 0 : raw_mode = true;
1447 0 : }
1448 :
1449 0 : assign_bit(keycode, key_down, down);
1450 :
1451 0 : if (rep &&
1452 0 : (!vc_kbd_mode(kbd, VC_REPEAT) ||
1453 0 : (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1454 : /*
1455 : * Don't repeat a key if the input buffers are not empty and the
1456 : * characters get aren't echoed locally. This makes key repeat
1457 : * usable with slow applications and under heavy loads.
1458 : */
1459 0 : return;
1460 : }
1461 :
1462 0 : param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1463 0 : param.ledstate = kbd->ledflagstate;
1464 0 : key_map = key_maps[shift_final];
1465 :
1466 0 : rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1467 : KBD_KEYCODE, ¶m);
1468 0 : if (rc == NOTIFY_STOP || !key_map) {
1469 0 : atomic_notifier_call_chain(&keyboard_notifier_list,
1470 : KBD_UNBOUND_KEYCODE, ¶m);
1471 0 : do_compute_shiftstate();
1472 0 : kbd->slockstate = 0;
1473 0 : return;
1474 : }
1475 :
1476 0 : if (keycode < NR_KEYS)
1477 0 : keysym = key_map[keycode];
1478 0 : else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1479 0 : keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1480 : else
1481 0 : return;
1482 :
1483 0 : type = KTYP(keysym);
1484 :
1485 0 : if (type < 0xf0) {
1486 0 : param.value = keysym;
1487 0 : rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1488 : KBD_UNICODE, ¶m);
1489 0 : if (rc != NOTIFY_STOP)
1490 0 : if (down && !(raw_mode || kbd->kbdmode == VC_OFF))
1491 0 : k_unicode(vc, keysym, !down);
1492 0 : return;
1493 : }
1494 :
1495 0 : type -= 0xf0;
1496 :
1497 0 : if (type == KT_LETTER) {
1498 0 : type = KT_LATIN;
1499 0 : if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1500 0 : key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1501 0 : if (key_map)
1502 0 : keysym = key_map[keycode];
1503 0 : }
1504 0 : }
1505 :
1506 0 : param.value = keysym;
1507 0 : rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1508 : KBD_KEYSYM, ¶m);
1509 0 : if (rc == NOTIFY_STOP)
1510 0 : return;
1511 :
1512 0 : if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1513 0 : return;
1514 :
1515 0 : (*k_handler[type])(vc, KVAL(keysym), !down);
1516 :
1517 0 : param.ledstate = kbd->ledflagstate;
1518 0 : atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1519 :
1520 0 : if (type != KT_SLOCK)
1521 0 : kbd->slockstate = 0;
1522 0 : }
1523 :
1524 0 : static void kbd_event(struct input_handle *handle, unsigned int event_type,
1525 : unsigned int event_code, int value)
1526 : {
1527 : /* We are called with interrupts disabled, just take the lock */
1528 0 : spin_lock(&kbd_event_lock);
1529 :
1530 0 : if (event_type == EV_MSC && event_code == MSC_RAW &&
1531 0 : kbd_is_hw_raw(handle->dev))
1532 0 : kbd_rawcode(value);
1533 0 : if (event_type == EV_KEY && event_code <= KEY_MAX)
1534 0 : kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1535 :
1536 0 : spin_unlock(&kbd_event_lock);
1537 :
1538 0 : tasklet_schedule(&keyboard_tasklet);
1539 0 : do_poke_blanked_console = 1;
1540 0 : schedule_console_callback();
1541 0 : }
1542 :
1543 0 : static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1544 : {
1545 0 : if (test_bit(EV_SND, dev->evbit))
1546 0 : return true;
1547 :
1548 0 : if (test_bit(EV_KEY, dev->evbit)) {
1549 0 : if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1550 : BTN_MISC)
1551 0 : return true;
1552 0 : if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1553 0 : KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1554 0 : return true;
1555 0 : }
1556 :
1557 0 : return false;
1558 0 : }
1559 :
1560 : /*
1561 : * When a keyboard (or other input device) is found, the kbd_connect
1562 : * function is called. The function then looks at the device, and if it
1563 : * likes it, it can open it and get events from it. In this (kbd_connect)
1564 : * function, we should decide which VT to bind that keyboard to initially.
1565 : */
1566 0 : static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1567 : const struct input_device_id *id)
1568 : {
1569 0 : struct input_handle *handle;
1570 0 : int error;
1571 :
1572 0 : handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1573 0 : if (!handle)
1574 0 : return -ENOMEM;
1575 :
1576 0 : handle->dev = dev;
1577 0 : handle->handler = handler;
1578 0 : handle->name = "kbd";
1579 :
1580 0 : error = input_register_handle(handle);
1581 0 : if (error)
1582 0 : goto err_free_handle;
1583 :
1584 0 : error = input_open_device(handle);
1585 0 : if (error)
1586 0 : goto err_unregister_handle;
1587 :
1588 0 : return 0;
1589 :
1590 : err_unregister_handle:
1591 0 : input_unregister_handle(handle);
1592 : err_free_handle:
1593 0 : kfree(handle);
1594 0 : return error;
1595 0 : }
1596 :
1597 0 : static void kbd_disconnect(struct input_handle *handle)
1598 : {
1599 0 : input_close_device(handle);
1600 0 : input_unregister_handle(handle);
1601 0 : kfree(handle);
1602 0 : }
1603 :
1604 : /*
1605 : * Start keyboard handler on the new keyboard by refreshing LED state to
1606 : * match the rest of the system.
1607 : */
1608 0 : static void kbd_start(struct input_handle *handle)
1609 : {
1610 0 : tasklet_disable(&keyboard_tasklet);
1611 :
1612 0 : if (ledstate != -1U)
1613 0 : kbd_update_leds_helper(handle, &ledstate);
1614 :
1615 0 : tasklet_enable(&keyboard_tasklet);
1616 0 : }
1617 :
1618 : static const struct input_device_id kbd_ids[] = {
1619 : {
1620 : .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1621 : .evbit = { BIT_MASK(EV_KEY) },
1622 : },
1623 :
1624 : {
1625 : .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1626 : .evbit = { BIT_MASK(EV_SND) },
1627 : },
1628 :
1629 : { }, /* Terminating entry */
1630 : };
1631 :
1632 : MODULE_DEVICE_TABLE(input, kbd_ids);
1633 :
1634 : static struct input_handler kbd_handler = {
1635 : .event = kbd_event,
1636 : .match = kbd_match,
1637 : .connect = kbd_connect,
1638 : .disconnect = kbd_disconnect,
1639 : .start = kbd_start,
1640 : .name = "kbd",
1641 : .id_table = kbd_ids,
1642 : };
1643 :
1644 0 : int __init kbd_init(void)
1645 : {
1646 0 : int i;
1647 0 : int error;
1648 :
1649 0 : for (i = 0; i < MAX_NR_CONSOLES; i++) {
1650 0 : kbd_table[i].ledflagstate = kbd_defleds();
1651 0 : kbd_table[i].default_ledflagstate = kbd_defleds();
1652 0 : kbd_table[i].ledmode = LED_SHOW_FLAGS;
1653 0 : kbd_table[i].lockstate = KBD_DEFLOCK;
1654 0 : kbd_table[i].slockstate = 0;
1655 0 : kbd_table[i].modeflags = KBD_DEFMODE;
1656 0 : kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1657 0 : }
1658 :
1659 0 : kbd_init_leds();
1660 :
1661 0 : error = input_register_handler(&kbd_handler);
1662 0 : if (error)
1663 0 : return error;
1664 :
1665 0 : tasklet_enable(&keyboard_tasklet);
1666 0 : tasklet_schedule(&keyboard_tasklet);
1667 :
1668 0 : return 0;
1669 0 : }
1670 :
1671 : /* Ioctl support code */
1672 :
1673 : /**
1674 : * vt_do_diacrit - diacritical table updates
1675 : * @cmd: ioctl request
1676 : * @udp: pointer to user data for ioctl
1677 : * @perm: permissions check computed by caller
1678 : *
1679 : * Update the diacritical tables atomically and safely. Lock them
1680 : * against simultaneous keypresses
1681 : */
1682 0 : int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1683 : {
1684 0 : unsigned long flags;
1685 0 : int asize;
1686 0 : int ret = 0;
1687 :
1688 0 : switch (cmd) {
1689 : case KDGKBDIACR:
1690 : {
1691 0 : struct kbdiacrs __user *a = udp;
1692 0 : struct kbdiacr *dia;
1693 0 : int i;
1694 :
1695 0 : dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1696 : GFP_KERNEL);
1697 0 : if (!dia)
1698 0 : return -ENOMEM;
1699 :
1700 : /* Lock the diacriticals table, make a copy and then
1701 : copy it after we unlock */
1702 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1703 :
1704 0 : asize = accent_table_size;
1705 0 : for (i = 0; i < asize; i++) {
1706 0 : dia[i].diacr = conv_uni_to_8bit(
1707 0 : accent_table[i].diacr);
1708 0 : dia[i].base = conv_uni_to_8bit(
1709 0 : accent_table[i].base);
1710 0 : dia[i].result = conv_uni_to_8bit(
1711 0 : accent_table[i].result);
1712 0 : }
1713 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1714 :
1715 0 : if (put_user(asize, &a->kb_cnt))
1716 0 : ret = -EFAULT;
1717 0 : else if (copy_to_user(a->kbdiacr, dia,
1718 0 : asize * sizeof(struct kbdiacr)))
1719 0 : ret = -EFAULT;
1720 0 : kfree(dia);
1721 0 : return ret;
1722 0 : }
1723 : case KDGKBDIACRUC:
1724 : {
1725 0 : struct kbdiacrsuc __user *a = udp;
1726 0 : void *buf;
1727 :
1728 0 : buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1729 : GFP_KERNEL);
1730 0 : if (buf == NULL)
1731 0 : return -ENOMEM;
1732 :
1733 : /* Lock the diacriticals table, make a copy and then
1734 : copy it after we unlock */
1735 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1736 :
1737 0 : asize = accent_table_size;
1738 0 : memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1739 :
1740 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1741 :
1742 0 : if (put_user(asize, &a->kb_cnt))
1743 0 : ret = -EFAULT;
1744 0 : else if (copy_to_user(a->kbdiacruc, buf,
1745 0 : asize*sizeof(struct kbdiacruc)))
1746 0 : ret = -EFAULT;
1747 0 : kfree(buf);
1748 0 : return ret;
1749 0 : }
1750 :
1751 : case KDSKBDIACR:
1752 : {
1753 0 : struct kbdiacrs __user *a = udp;
1754 0 : struct kbdiacr *dia = NULL;
1755 0 : unsigned int ct;
1756 0 : int i;
1757 :
1758 0 : if (!perm)
1759 0 : return -EPERM;
1760 0 : if (get_user(ct, &a->kb_cnt))
1761 0 : return -EFAULT;
1762 0 : if (ct >= MAX_DIACR)
1763 0 : return -EINVAL;
1764 :
1765 0 : if (ct) {
1766 0 : dia = memdup_array_user(a->kbdiacr,
1767 0 : ct, sizeof(struct kbdiacr));
1768 0 : if (IS_ERR(dia))
1769 0 : return PTR_ERR(dia);
1770 0 : }
1771 :
1772 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1773 0 : accent_table_size = ct;
1774 0 : for (i = 0; i < ct; i++) {
1775 0 : accent_table[i].diacr =
1776 0 : conv_8bit_to_uni(dia[i].diacr);
1777 0 : accent_table[i].base =
1778 0 : conv_8bit_to_uni(dia[i].base);
1779 0 : accent_table[i].result =
1780 0 : conv_8bit_to_uni(dia[i].result);
1781 0 : }
1782 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1783 0 : kfree(dia);
1784 0 : return 0;
1785 0 : }
1786 :
1787 : case KDSKBDIACRUC:
1788 : {
1789 0 : struct kbdiacrsuc __user *a = udp;
1790 0 : unsigned int ct;
1791 0 : void *buf = NULL;
1792 :
1793 0 : if (!perm)
1794 0 : return -EPERM;
1795 :
1796 0 : if (get_user(ct, &a->kb_cnt))
1797 0 : return -EFAULT;
1798 :
1799 0 : if (ct >= MAX_DIACR)
1800 0 : return -EINVAL;
1801 :
1802 0 : if (ct) {
1803 0 : buf = memdup_array_user(a->kbdiacruc,
1804 0 : ct, sizeof(struct kbdiacruc));
1805 0 : if (IS_ERR(buf))
1806 0 : return PTR_ERR(buf);
1807 0 : }
1808 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1809 0 : if (ct)
1810 0 : memcpy(accent_table, buf,
1811 0 : ct * sizeof(struct kbdiacruc));
1812 0 : accent_table_size = ct;
1813 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1814 0 : kfree(buf);
1815 0 : return 0;
1816 0 : }
1817 : }
1818 0 : return ret;
1819 0 : }
1820 :
1821 : /**
1822 : * vt_do_kdskbmode - set keyboard mode ioctl
1823 : * @console: the console to use
1824 : * @arg: the requested mode
1825 : *
1826 : * Update the keyboard mode bits while holding the correct locks.
1827 : * Return 0 for success or an error code.
1828 : */
1829 0 : int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1830 : {
1831 0 : struct kbd_struct *kb = &kbd_table[console];
1832 0 : int ret = 0;
1833 0 : unsigned long flags;
1834 :
1835 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1836 0 : switch(arg) {
1837 : case K_RAW:
1838 0 : kb->kbdmode = VC_RAW;
1839 0 : break;
1840 : case K_MEDIUMRAW:
1841 0 : kb->kbdmode = VC_MEDIUMRAW;
1842 0 : break;
1843 : case K_XLATE:
1844 0 : kb->kbdmode = VC_XLATE;
1845 0 : do_compute_shiftstate();
1846 0 : break;
1847 : case K_UNICODE:
1848 0 : kb->kbdmode = VC_UNICODE;
1849 0 : do_compute_shiftstate();
1850 0 : break;
1851 : case K_OFF:
1852 0 : kb->kbdmode = VC_OFF;
1853 0 : break;
1854 : default:
1855 0 : ret = -EINVAL;
1856 0 : }
1857 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1858 0 : return ret;
1859 0 : }
1860 :
1861 : /**
1862 : * vt_do_kdskbmeta - set keyboard meta state
1863 : * @console: the console to use
1864 : * @arg: the requested meta state
1865 : *
1866 : * Update the keyboard meta bits while holding the correct locks.
1867 : * Return 0 for success or an error code.
1868 : */
1869 0 : int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1870 : {
1871 0 : struct kbd_struct *kb = &kbd_table[console];
1872 0 : int ret = 0;
1873 0 : unsigned long flags;
1874 :
1875 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1876 0 : switch(arg) {
1877 : case K_METABIT:
1878 0 : clr_vc_kbd_mode(kb, VC_META);
1879 0 : break;
1880 : case K_ESCPREFIX:
1881 0 : set_vc_kbd_mode(kb, VC_META);
1882 0 : break;
1883 : default:
1884 0 : ret = -EINVAL;
1885 0 : }
1886 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1887 0 : return ret;
1888 0 : }
1889 :
1890 0 : int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1891 : int perm)
1892 : {
1893 0 : struct kbkeycode tmp;
1894 0 : int kc = 0;
1895 :
1896 0 : if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1897 0 : return -EFAULT;
1898 0 : switch (cmd) {
1899 : case KDGETKEYCODE:
1900 0 : kc = getkeycode(tmp.scancode);
1901 0 : if (kc >= 0)
1902 0 : kc = put_user(kc, &user_kbkc->keycode);
1903 0 : break;
1904 : case KDSETKEYCODE:
1905 0 : if (!perm)
1906 0 : return -EPERM;
1907 0 : kc = setkeycode(tmp.scancode, tmp.keycode);
1908 0 : break;
1909 : }
1910 0 : return kc;
1911 0 : }
1912 :
1913 0 : static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1914 : unsigned char map)
1915 : {
1916 0 : unsigned short *key_map, val;
1917 0 : unsigned long flags;
1918 :
1919 : /* Ensure another thread doesn't free it under us */
1920 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1921 0 : key_map = key_maps[map];
1922 0 : if (key_map) {
1923 0 : val = U(key_map[idx]);
1924 0 : if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1925 0 : val = K_HOLE;
1926 0 : } else
1927 0 : val = idx ? K_HOLE : K_NOSUCHMAP;
1928 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1929 :
1930 0 : return val;
1931 0 : }
1932 :
1933 0 : static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1934 : unsigned char map, unsigned short val)
1935 : {
1936 0 : unsigned long flags;
1937 0 : unsigned short *key_map, *new_map, oldval;
1938 :
1939 0 : if (!idx && val == K_NOSUCHMAP) {
1940 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1941 : /* deallocate map */
1942 0 : key_map = key_maps[map];
1943 0 : if (map && key_map) {
1944 0 : key_maps[map] = NULL;
1945 0 : if (key_map[0] == U(K_ALLOCATED)) {
1946 0 : kfree(key_map);
1947 0 : keymap_count--;
1948 0 : }
1949 0 : }
1950 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1951 :
1952 0 : return 0;
1953 : }
1954 :
1955 0 : if (KTYP(val) < NR_TYPES) {
1956 0 : if (KVAL(val) > max_vals[KTYP(val)])
1957 0 : return -EINVAL;
1958 0 : } else if (kbdmode != VC_UNICODE)
1959 0 : return -EINVAL;
1960 :
1961 : /* ++Geert: non-PC keyboards may generate keycode zero */
1962 : #if !defined(__mc68000__) && !defined(__powerpc__)
1963 : /* assignment to entry 0 only tests validity of args */
1964 0 : if (!idx)
1965 0 : return 0;
1966 : #endif
1967 :
1968 0 : new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1969 0 : if (!new_map)
1970 0 : return -ENOMEM;
1971 :
1972 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1973 0 : key_map = key_maps[map];
1974 0 : if (key_map == NULL) {
1975 0 : int j;
1976 :
1977 0 : if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1978 0 : !capable(CAP_SYS_RESOURCE)) {
1979 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1980 0 : kfree(new_map);
1981 0 : return -EPERM;
1982 : }
1983 0 : key_maps[map] = new_map;
1984 0 : key_map = new_map;
1985 0 : key_map[0] = U(K_ALLOCATED);
1986 0 : for (j = 1; j < NR_KEYS; j++)
1987 0 : key_map[j] = U(K_HOLE);
1988 0 : keymap_count++;
1989 0 : } else
1990 0 : kfree(new_map);
1991 :
1992 0 : oldval = U(key_map[idx]);
1993 0 : if (val == oldval)
1994 0 : goto out;
1995 :
1996 : /* Attention Key */
1997 0 : if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1998 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1999 0 : return -EPERM;
2000 : }
2001 :
2002 0 : key_map[idx] = U(val);
2003 0 : if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2004 0 : do_compute_shiftstate();
2005 : out:
2006 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2007 :
2008 0 : return 0;
2009 0 : }
2010 :
2011 0 : int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2012 : unsigned int console)
2013 : {
2014 0 : struct kbd_struct *kb = &kbd_table[console];
2015 0 : struct kbentry kbe;
2016 :
2017 0 : if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2018 0 : return -EFAULT;
2019 :
2020 0 : switch (cmd) {
2021 : case KDGKBENT:
2022 0 : return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2023 : kbe.kb_table),
2024 : &user_kbe->kb_value);
2025 : case KDSKBENT:
2026 0 : if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2027 0 : return -EPERM;
2028 0 : return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2029 0 : kbe.kb_value);
2030 : }
2031 0 : return 0;
2032 0 : }
2033 :
2034 0 : static char *vt_kdskbsent(char *kbs, unsigned char cur)
2035 : {
2036 : static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2037 0 : char *cur_f = func_table[cur];
2038 :
2039 0 : if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2040 0 : strcpy(cur_f, kbs);
2041 0 : return kbs;
2042 : }
2043 :
2044 0 : func_table[cur] = kbs;
2045 :
2046 0 : return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2047 0 : }
2048 :
2049 0 : int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2050 : {
2051 0 : unsigned char kb_func;
2052 0 : unsigned long flags;
2053 0 : char *kbs;
2054 0 : int ret;
2055 :
2056 0 : if (get_user(kb_func, &user_kdgkb->kb_func))
2057 0 : return -EFAULT;
2058 :
2059 0 : kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2060 :
2061 0 : switch (cmd) {
2062 : case KDGKBSENT: {
2063 : /* size should have been a struct member */
2064 0 : ssize_t len = sizeof(user_kdgkb->kb_string);
2065 :
2066 0 : kbs = kmalloc(len, GFP_KERNEL);
2067 0 : if (!kbs)
2068 0 : return -ENOMEM;
2069 :
2070 0 : spin_lock_irqsave(&func_buf_lock, flags);
2071 0 : len = strscpy(kbs, func_table[kb_func] ? : "", len);
2072 0 : spin_unlock_irqrestore(&func_buf_lock, flags);
2073 :
2074 0 : if (len < 0) {
2075 0 : ret = -ENOSPC;
2076 0 : break;
2077 : }
2078 0 : ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2079 : -EFAULT : 0;
2080 0 : break;
2081 0 : }
2082 : case KDSKBSENT:
2083 0 : if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2084 0 : return -EPERM;
2085 :
2086 0 : kbs = strndup_user(user_kdgkb->kb_string,
2087 : sizeof(user_kdgkb->kb_string));
2088 0 : if (IS_ERR(kbs))
2089 0 : return PTR_ERR(kbs);
2090 :
2091 0 : spin_lock_irqsave(&func_buf_lock, flags);
2092 0 : kbs = vt_kdskbsent(kbs, kb_func);
2093 0 : spin_unlock_irqrestore(&func_buf_lock, flags);
2094 :
2095 0 : ret = 0;
2096 0 : break;
2097 : }
2098 :
2099 0 : kfree(kbs);
2100 :
2101 0 : return ret;
2102 0 : }
2103 :
2104 0 : int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2105 : {
2106 0 : struct kbd_struct *kb = &kbd_table[console];
2107 0 : unsigned long flags;
2108 0 : unsigned char ucval;
2109 :
2110 0 : switch(cmd) {
2111 : /* the ioctls below read/set the flags usually shown in the leds */
2112 : /* don't use them - they will go away without warning */
2113 : case KDGKBLED:
2114 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2115 0 : ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2116 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2117 0 : return put_user(ucval, (char __user *)arg);
2118 :
2119 : case KDSKBLED:
2120 0 : if (!perm)
2121 0 : return -EPERM;
2122 0 : if (arg & ~0x77)
2123 0 : return -EINVAL;
2124 0 : spin_lock_irqsave(&led_lock, flags);
2125 0 : kb->ledflagstate = (arg & 7);
2126 0 : kb->default_ledflagstate = ((arg >> 4) & 7);
2127 0 : set_leds();
2128 0 : spin_unlock_irqrestore(&led_lock, flags);
2129 0 : return 0;
2130 :
2131 : /* the ioctls below only set the lights, not the functions */
2132 : /* for those, see KDGKBLED and KDSKBLED above */
2133 : case KDGETLED:
2134 0 : ucval = getledstate();
2135 0 : return put_user(ucval, (char __user *)arg);
2136 :
2137 : case KDSETLED:
2138 0 : if (!perm)
2139 0 : return -EPERM;
2140 0 : setledstate(kb, arg);
2141 0 : return 0;
2142 : }
2143 0 : return -ENOIOCTLCMD;
2144 0 : }
2145 :
2146 0 : int vt_do_kdgkbmode(unsigned int console)
2147 : {
2148 0 : struct kbd_struct *kb = &kbd_table[console];
2149 : /* This is a spot read so needs no locking */
2150 0 : switch (kb->kbdmode) {
2151 : case VC_RAW:
2152 0 : return K_RAW;
2153 : case VC_MEDIUMRAW:
2154 0 : return K_MEDIUMRAW;
2155 : case VC_UNICODE:
2156 0 : return K_UNICODE;
2157 : case VC_OFF:
2158 0 : return K_OFF;
2159 : default:
2160 0 : return K_XLATE;
2161 : }
2162 0 : }
2163 :
2164 : /**
2165 : * vt_do_kdgkbmeta - report meta status
2166 : * @console: console to report
2167 : *
2168 : * Report the meta flag status of this console
2169 : */
2170 0 : int vt_do_kdgkbmeta(unsigned int console)
2171 : {
2172 0 : struct kbd_struct *kb = &kbd_table[console];
2173 : /* Again a spot read so no locking */
2174 0 : return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2175 0 : }
2176 :
2177 : /**
2178 : * vt_reset_unicode - reset the unicode status
2179 : * @console: console being reset
2180 : *
2181 : * Restore the unicode console state to its default
2182 : */
2183 0 : void vt_reset_unicode(unsigned int console)
2184 : {
2185 0 : unsigned long flags;
2186 :
2187 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2188 0 : kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2189 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2190 0 : }
2191 :
2192 : /**
2193 : * vt_get_shift_state - shift bit state
2194 : *
2195 : * Report the shift bits from the keyboard state. We have to export
2196 : * this to support some oddities in the vt layer.
2197 : */
2198 0 : int vt_get_shift_state(void)
2199 : {
2200 : /* Don't lock as this is a transient report */
2201 0 : return shift_state;
2202 : }
2203 :
2204 : /**
2205 : * vt_reset_keyboard - reset keyboard state
2206 : * @console: console to reset
2207 : *
2208 : * Reset the keyboard bits for a console as part of a general console
2209 : * reset event
2210 : */
2211 0 : void vt_reset_keyboard(unsigned int console)
2212 : {
2213 0 : struct kbd_struct *kb = &kbd_table[console];
2214 0 : unsigned long flags;
2215 :
2216 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2217 0 : set_vc_kbd_mode(kb, VC_REPEAT);
2218 0 : clr_vc_kbd_mode(kb, VC_CKMODE);
2219 0 : clr_vc_kbd_mode(kb, VC_APPLIC);
2220 0 : clr_vc_kbd_mode(kb, VC_CRLF);
2221 0 : kb->lockstate = 0;
2222 0 : kb->slockstate = 0;
2223 0 : spin_lock(&led_lock);
2224 0 : kb->ledmode = LED_SHOW_FLAGS;
2225 0 : kb->ledflagstate = kb->default_ledflagstate;
2226 0 : spin_unlock(&led_lock);
2227 : /* do not do set_leds here because this causes an endless tasklet loop
2228 : when the keyboard hasn't been initialized yet */
2229 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2230 0 : }
2231 :
2232 : /**
2233 : * vt_get_kbd_mode_bit - read keyboard status bits
2234 : * @console: console to read from
2235 : * @bit: mode bit to read
2236 : *
2237 : * Report back a vt mode bit. We do this without locking so the
2238 : * caller must be sure that there are no synchronization needs
2239 : */
2240 :
2241 0 : int vt_get_kbd_mode_bit(unsigned int console, int bit)
2242 : {
2243 0 : struct kbd_struct *kb = &kbd_table[console];
2244 0 : return vc_kbd_mode(kb, bit);
2245 0 : }
2246 :
2247 : /**
2248 : * vt_set_kbd_mode_bit - read keyboard status bits
2249 : * @console: console to read from
2250 : * @bit: mode bit to read
2251 : *
2252 : * Set a vt mode bit. We do this without locking so the
2253 : * caller must be sure that there are no synchronization needs
2254 : */
2255 :
2256 0 : void vt_set_kbd_mode_bit(unsigned int console, int bit)
2257 : {
2258 0 : struct kbd_struct *kb = &kbd_table[console];
2259 0 : unsigned long flags;
2260 :
2261 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2262 0 : set_vc_kbd_mode(kb, bit);
2263 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2264 0 : }
2265 :
2266 : /**
2267 : * vt_clr_kbd_mode_bit - read keyboard status bits
2268 : * @console: console to read from
2269 : * @bit: mode bit to read
2270 : *
2271 : * Report back a vt mode bit. We do this without locking so the
2272 : * caller must be sure that there are no synchronization needs
2273 : */
2274 :
2275 0 : void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2276 : {
2277 0 : struct kbd_struct *kb = &kbd_table[console];
2278 0 : unsigned long flags;
2279 :
2280 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2281 0 : clr_vc_kbd_mode(kb, bit);
2282 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2283 0 : }
|